问题 解答题
已知函数f(x)=xe-x+(x-2)ex-a(e≈2.73).
(Ⅰ)当a=2时,证明函数f(x)在R上是增函数;
(Ⅱ)若a>2时,当x≥1时,f(x)≥
x2-2x+1
ex
恒成立,求实数a的取值范围.
答案

(Ⅰ)当a=2时,f(x)=xe-x+(x-2)ex-2,f(x)的定义域为R,

f′(x)=e-x-xe-x+ex-2+(x-2)ex-2=(x-1)(ex-2-e-x)=e-x(x-1)(ex-1-1)(ex-1+1).

当x≥1时,x-1≥0,ex-1-1≥0,所以f′(x)≥0,

当x<1时,x-1<0,ex-1-1<0,所以f′(x)≥0,

所以对任意实数x,f′(x)≥0,

所以f(x)在R上是增函数;  

(II)当x≥1时,f(x)≥

x2-2x+1
ex
恒成立,即(x-2)e2x-a-x2+3x-1≥0恒成立,

设h(x)=(x-2)e2x-a-x2+3x-1(x≥1),则h′(x)=(2x-3)(e2x-a-1),

令h′(x)=(2x-3)(e2x-a-1)=0,解得x1=

3
2
x2=
a
2

(1)当1<

a
2
3
2
,即2<a<3时,

x(1,
a
2
a
2
a
2
3
2
3
2
3
2
,+∞)
h′(x)+0-0+
h(x)单调递增极大值单调递减极小值单调递增
所以要使结论成立,则h(1)=-e2-a+1≥0,h(
3
2
)=-
1
2
e3-a+
5
4
≥0,即e2-a≤1,e3-a
5
2

解得a≥2,a≥3-ln

5
2
,所以3-ln
5
2
≤a<3;

(2)当

a
2
=
3
2
,即a=3时,h′(x)≥0恒成立,所以h(x)是增函数,又h(1)=-e-1+1>0,

故结论成立;                              

(3)当

a
2
3
2
,即a>3时,

x(1,
3
2
3
2
3
2
a
2
a
2
a
2
,+∞)
h′(x)+0-0+
h(x)单调递增极大值单调递减极小值单调递增
所以要使结论成立,

则h(1)=-e2-a+1≥0,h(

a
2
)=-
a2
4
+2a-3≥0,即e2-a≤1,a2-8a+12≤0,

解得a≥2,2≤a≤6,所以3<a≤6;                              

综上所述,若a>2,当x≥1时,f(x)≥

x2-2x+1
ex
恒成立,实数a的取值范围是3-ln
5
2
≤a≤6.                                                    …(12分)

选择题
单项选择题