问题
解答题
设正项等比数列{an}的首项a1=
(Ⅰ)求数列{an}的通项; (Ⅱ)求数列{nSn}的前n项和Tn. |
答案
(Ⅰ)设设正项等比数列{an}的公比为q(q>0),由题有a1-a2=2a3,且a1=
,1 2
∴a1-a1q=2a1q2,即有2q2+q-1=0,解得q=-1(舍去)或q=
,1 2
∴an=
;1 2n
(Ⅱ)因为是首项、公比都为
的等比数列,故Sn=1 2
=1-
(1-1 2
)1 2n 1- 1 2
,nSn=n-1 2n
.n 2n
则数列{nSn}的前n项和 Tn=(1+2+…+n)-(
+1 2
+…+2 22
),n 2n
=Tn 2
(1+2+…+n)-(1 2
+1 22
+…+2 23
+n-1 2n
).n 2n+1
前两式相减,得
=Tn 2
(1+2+…+n)-(1 2
+1 2
+…+1 22
)+1 2n
=n 2n+1
-n(n+1) 4
+
(1-1 2
)1 2n 1- 1 2
,n 2n+1
即Tn=
+n(n+1) 2
+1 2n-1
-2.n 2n