问题 选择题
等差数列{an}中,
an
a2n
是一个与n无关的常数,则该常数的可能值的集合为(  )
A.1B.{1,
1
2
}
C.{
1
2
}
D.{0,
1
2
,1}
答案

由题意可得:

因为数列{an}是等差数列,

所以设数列{an}的通项公式为:an=a1+(n-1)d,则a2n=a1+(2n-1)d,

所以

an
a2n
=
a1+(n-1)d
a1+(2n-1)d
 =
a1-d+nd
a1-d+2nd

因为

an
a2n
是一个与n无关的常数,

所以a1-d=0或d=0,

所以

an
a2n
可能是1或
1
2

故选B.

多项选择题
填空题