问题
填空题
已知椭圆
|
答案
∵椭圆方程为
+x2 25
=1,y2 16
∴焦点坐标为B(3,0)和B'(-3,0)
连接PB'、AB',根据椭圆的定义,得|PB|+|PB'|=2a=10,可得|PB|=10-|PB'|
因此,|PA|+|PB|=|PA|+(10-|PB'|)=10+(|PA|-|PB'|)
∵|PA|-|PB'|≤|AB'|
∴|PA|+|PB|≤10+|AB'|=10+
=10+5=15(1+3)2+(3-0)2
当且仅当点P在AB'延长线上时,等号成立
综上所述,可得|PA|+|PB|的最大值为15
故答案为:15