问题 解答题
数列{an}的各项均为正数,Sn为其前n项和,对于任意n∈N*,总有an,Sn,an2成等差数列.
(1)求数列{an}的通项公式;
(2)设bn=
1
a2n
,数列{bn}的前n项和为Tn,求证:Tn
n
n+1
答案

(1)由已知:对于n∈N*,总有2Sn=an+an2①成立

2Sn-1=an-1+an-1 2(n≥2)②

①-②得2an=an+an2-an-1-an-12,∴an+an-1=(an+an-1)(an-an-1

∵an,an-1均为正数,∴an-an-1=1(n≥2)∴数列{an}是公差为1的等差数列

又n=1时,2S1=a1+a12,解得a1=1,∴an=n.(n∈N*

(2)由(1)可知bn=

1
n2
1
n2
1
n(n+1)
=
1
n
-
1
n+1

Tn>(1-

1
2
)+(
1
2
-
1
3
)++(
1
n
-
1
n+1
)=
n
n+1

判断题
名词解释