问题
解答题
数列{an}的各项均为正数,Sn为其前n项和,对于任意n∈N*,总有an,Sn,an2成等差数列. (1)求数列{an}的通项公式; (2)设bn=
|
答案
(1)由已知:对于n∈N*,总有2Sn=an+an2①成立
∴2Sn-1=an-1+an-1 2(n≥2)②
①-②得2an=an+an2-an-1-an-12,∴an+an-1=(an+an-1)(an-an-1)
∵an,an-1均为正数,∴an-an-1=1(n≥2)∴数列{an}是公差为1的等差数列
又n=1时,2S1=a1+a12,解得a1=1,∴an=n.(n∈N*)
(2)由(1)可知bn=
∵1 n2
>1 n2
=1 n(n+1)
-1 n 1 n+1
∴Tn>(1-
)+(1 2
-1 2
)++(1 3
-1 n
)=1 n+1 n n+1