问题 选择题

若不等式|2x-a|>x-2对任意x∈(0,3)恒成立,则实数a的取值范围是(  )

A.(-∞,2)∪[7,+∞)

B.(-∞,2)∪(7,+∞)

C.(-∞,4)∪[7,+∞)

D.(-∞,2)∪(4,+∞)

答案

因为不等式|2x-a|>x-2①对任意x∈(0,3)恒成立,

所以:当a=7,①式转换为|2x-a|=|2x-7|=7-2x>x-2⇒x<3符合要求;排除答案B,

当a=3时,|2x-a|=|2x-3|,

3
2
≤x<3时,①式⇒2x-3>x-2⇒x>1成立;

在0<x<

3
2
时①式⇒3-2x>x-2⇒x<
5
3
成立.

即a=3时符合要求,排除答案A,B,D.

故选:C.

选择题
问答题 简答题