问题 填空题
设Sn为等差数列{an}的前n项和,且a1=-2010,
S2011
2011
-
S2008
2008
=3
,则S2011=______.
答案

因为数列{an}是等差数列,设其公差为d,

Sn=

n(a1+an)
2
,得:
Sn
n
=
a1+an
2

所以,

S2011
2011
-
S2008
2008
=
a1+a2011
2
-
a1+a2008
2
=
a2011-a2008
2
=
3d
2

因为

S2011
2011
-
S2008
2008
=3,所以
3d
2
=3
,则d=2.

又a1=-2010,

所以,S2011=2011a1+

2011×(2011-1)d
2

=2011×(-2010)+

2011×2010×2
2
=0.

故答案为0.

填空题
单项选择题