问题
解答题
已知数列{an}满足:a1=1,a2=a(a>0).数列{bn}满足bn=anan+1(n∈N*).
(1)若{an}是等差数列,且b3=12,求a的值及{an}的通项公式;
(2)若{an}是等比数列,求{bn}的前项和Sn.
答案
(1)∵{an}是等差数列,a1=1,a2=a(a>0),∴an=1+(n-1)(a-1).
又b3=12,∴a3a4=12,即(2a-1)(3a-2)=12,
解得a=2或a=-
,5 6
∵a>0,∴a=2从而an=n.
(2)∵{an}是等比数列,a1=1,a2=a(a>0),∴an=an-1,则bn=anan+1=a2n-1.
=a2∴数列{bn}是首项为a,公比为a2的等比数列,bn+1 bn
当a=1时,Sn=n;
当a≠1时,Sn=
=a(1-a2n) 1-a2
.a2n+1-a a2-1