问题
填空题
设椭圆
|
答案
∵椭圆方程为
+x2 a2
=1(a>b>0)y2 b2
∴c=
,焦点坐标为F1(-c,0),F2(c,0),a2-b2
∵线段F1F2被点(
,0)分成3:1的两段,b 2
∴
+c=3(c-b 2
),解之得b=c,b 2
即
=c,解之得a=a2-c2
c,可得此椭圆的离心率为e=2 2 2
故答案为:2 2
设椭圆
|
∵椭圆方程为
+x2 a2
=1(a>b>0)y2 b2
∴c=
,焦点坐标为F1(-c,0),F2(c,0),a2-b2
∵线段F1F2被点(
,0)分成3:1的两段,b 2
∴
+c=3(c-b 2
),解之得b=c,b 2
即
=c,解之得a=a2-c2
c,可得此椭圆的离心率为e=2 2 2
故答案为:2 2
补全对话。 A: Hi, Lucy! __1__ B: Well, I live near my school, so I get up at a quarter to seven. Never go to school late. A: Do you have breakfast at home? B: Yes, __2__ A: When do you go to school? B: __3__ so I go to school at seven forty-five. A: __4__ B: I leave school at five past five and __5__
|