问题
解答题
设数列{an}的前n项和为Sn,a1=1,an=
(1)求证:数列{an}为等差数列,并分别写出an和Sn关于n的表达式; (2)设数列{
(3)是否存在自然数n,使得S1+
|
答案
(1)证明:由an=
+2(n-1),得Sn=nan-2n(n-1)(n∈N*).Sn n
当n≥2时,an=Sn-Sn-1=nan-(n-1)an-1-4(n-1),即an-an-1=4,
∴数列{an}是以a1=1为首项,4为公差的等差数列.
于是,an=4n-3,Sn═2n2-n(n∈N*).
(2)证明:∵
=1 anan+1
=1 (4n-3)(4n+1)
(1 4
-1 4n-3
),1 4n+1
∴Tn=
+1 a1a2
+…+1 a2a3
=1 anan+1
[(1-1 4
)+(1 5
-1 5
)+(1 9
-1 9
)+…+(1 13
-1 4n-3
)]=1 4n+1
(1-1 4
)<1 4n+1
,1 4
又易知Tn单调递增,
故Tn≥T1=
=1 a1a2
,1 5
所以
≤Tn<1 5
.1 4
(3)由Sn=nan-2n(n-1),得
=an-2(n-1)=2n-1(n∈N*),Sn n
∴S1+
+S2 2
+…+S3 3
-(n-1)2=1+3+5+7+…+(2n-1)-(n-1)2Sn n
=n2-(n-1)2=2n-1.
令2n-1=2011,得n═1006,
即存在满足条件的自然数n=1006.