已知f (x)=mx(m为常数,m>0且m≠1).设f (a1),f (a2),…,f (an),…(n∈N)是首项为m2,公比为m的等比数列.
(1)求证:数列{an}是等差数列;
(2)若bn=an f (an),且数列{bn}的前n项和为Sn,当m=3时,求Sn;
(3)若cn=f(an)lgf (an),问是否存在m,使得数列{cn}中每一项恒不小于它后面的项?若存在,求出m的取值范围;若不存在,请说明理由.
(1)由题意f (an)=m2•mn-1,即man=mn+1.
∴an=n+1,∴an+1-an=1,∴数列{an}是以2为首项,1为公差的等差数列.
(2)由题意bn=anf (an)=(n+1)•mn+1,
当m=3时,bn=(n+1)•3n+1,∴Sn=2•32+3•33+4•34+…+(n+1)•3n+1…①,
①式两端同乘以3得,3Sn=2•33+3•34+4•35+…+(n+1)•3n+2…②
②-①并整理得,
2Sn=-2•32-33-34-35-…-3n+1+(n+1)•3n+2=-32-(32+33+34+35+…+3n+1)+(n+1)•3n+2
=-32-
+(n+1)•3n+2=-9+32(1-3n) 1-3
(1-3n)+(n+1)•3n+2=(n+9 2
)3n+2-1 2
.9 2
∴Sn=
(2n+1)3n+2-1 4
.9 4
(3)由题意cn=f (an)•lg f (an)=mn+1•lgmn+1=(n+1)•mn+1•lgm,
要使cn≥cn+1对一切n∈N*成立,即(n+1)•mn+1•lgm≥(n+2)•mn+2•lgm,对一切n∈N*成立,
当m>1时,lgm>0,所以n+1≥m(n+2),即m≤
对一切n∈N*成立,n+1 n+2
因为
=1-n+1 n+2
的最小值为1 n+2
,所以m≤2 3
,与m>1不符合,即此种情况不存在.2 3
②当0<m<1时,lgm<0,所以n+1≤m(n+2),即m≥
对一切n∈N*成立,所以n+1 n+2
≤m<1.2 3
综上,当
≤m<1时,数列{cn}中每一项恒不小于它后面的项.2 3