问题
解答题
求与椭圆
|
答案
椭圆
+x2 144
=1的焦点是:(0,-5)(0,5),焦点在y轴上;y2 169
于是可设双曲线的方程是
-y2 a2
=1,(a>0,b>0).x2 b2
又双曲线过点(0,2)
∴c=5,a=2,
∴b2=c2-a2=25-4=21.
∴双曲线的标准方程为:
-y2 4
=1.x2 21
所以:双曲线的实轴长为4,焦距为10,离心率e=
=c a
.渐近线方程是y=±5 2
x.2 21 21