已知数列{an}、{bn}满足:a1=
(1)求证:数列{
(2)求数列{an}的通项公式; (3)设sn=a1a2+a2a3+a3a4+…anan+1,若4aSn<bn对于n∈N*恒成立,试求实数a的取值范围. |
(1)由an+bn=1,得bn=1-an,
依题意bn+1=
=bn 1- a 2n
=1-an (1-an)(1+an)
∴1 1+an
-1 bn+1-1
=1 bn-1
-1
-11 1+an
=-1 1-an-1
-1+1 an
=-1∵a1=1 an
,∴b1=1 4
,3 4
=-4,∴数列{1 b1-1
}是以-4为首项公差为-1的等差数列1 bn-1
(2)由(1)知
=-4+(n-1)(-1)=-n-3,1 bn-1
则bn=-
+1=1 n+3
,an=1-bn=1-n+2 n+3
=n+2 n+3 1 n+3
(3)Sn=a1a2+a2a3+…+anan+1=
+1 4×5
+1 5×6
=1 (n+3)•(n+4)
-1 4
+1 5
-1 5
+1 6
-1 n+3
=1 n+4
-1 4
=1 n+4
∴4aSn-bn=n 4(n+4)
-an n+4
=n+2 n+3 (a-1)n2+(3a-6)n-8 (n+3)(n+4)
依题意可知(a-1)n2+(3a-6)n-8<0恒成立,令f(n)=(a-1)n2+(3a-6)n-8
当a=1时,f(n)=-3n-8<0恒成立
当a>1时,由二次函数性质知f(n)<0不可能成立
当a<1时,此二次函数的对称轴为x=-
=-3a-6 2(a-1)
(1-3 2
)<01 a-1
则f(n)在n∈N*上是单调递减,∴要使f(n)<0对n∈N*恒成立
必须且只须f(1)<0即4a-15<0,∴a<
,又a<1∴a<115 4
综上a≤1,4aSn≤bn对于n∈N*恒成立.