问题
选择题
定义在R上的函数f(x)满足:f(x-1)=f(x+1)=f(1-x)成立,且f(x)在[-1,0]上单调递增,设a=f(3),b=f(
|
答案
∵f(x-1)=f(x+1)=f(1-x)
令t=x-1,
则f(t)=f(t+2),f(t)=f(-t),
∴f(x)是以2为周期的偶函数,
又f(x+1)=f(1-x),
∴x=1是其对称轴;
又f(x)在[-1,0]上单调递增,可得f(x)在[1,2]上单调递增
又a=f(3)=f(1),b=f(
),c=f(2),2
∴f(3)=f(1)<f(
)<f(2),即a<b<c.2
故选D.