问题
填空题
已知函数f(x) 是定义在R 上的奇函数,且当x≥0 时,f(x)=x2+4x.若f(2-a2)>f(a),则实数a 的取值范围是______.
答案
函数f(x),当x≥0 时,f(x)=x2+4x,由二次函数的性质知,它在(0,+∞)上是增函数,
又函数f(x) 是定义在R 上的奇函数,
故函数f(x) 是定义在R 上的增函数
∵f(2-a2)>f(a),
∴2-a2>a
解得-2<a<1
实数a 的取值范围是(-2,1)
故答案为(-2,1)