理科附加题: 已知(1+
设F(x)=a1(x)+2a2(x)+3a3(x),…+nan(x)+(n+1)an+1(x). (Ⅰ)若a1(x),a2(x),a3(x)的系数依次成等差数列,求n的值; (Ⅱ)求证:对任意x1,x2∈[0,2],恒有|F(x1)-F(x2)|≤2n-1(n+2). |
(Ⅰ)依题意ak(x)=
(C k-1n
x)k-1,k=1,2,3,…,n+1,1 2
a1(x),a2(x),a3(x)的系数依次为Cn0=1,
•C 1n
=1 2
,n 2
•(C 2n
)2=1 2
,n(n-1) 8
所以2×
=1+n 2
,n(n-1) 8
解得n=8;
(Ⅱ)F(x)=a1(x)+2a2(x)+3a3(x),…+nan(x)+(n+1)an+1(x)=
+2C 0n
(C 1n
x)+31 2
(C 2n
x)2…+n1 2
(C n-1n
x)n-1+(n+1)1 2
(C nn
x)n1 2
F(2)-F(0)=2Cn1+3Cn2…+nCnn-1+(n+1)Cnn
设Sn=Cn0+2Cn1+3Cn2…+nCnn-1+(n+1)Cnn,
则Sn=(n+1)Cnn+nCnn-1…+3Cn2+2Cn1+Cn0
考虑到Cnk=Cnn-k,将以上两式相加得:2Sn=(n+2)(Cn0+Cn1+Cn2…+Cnn-1+Cnn)
所以Sn=(n+2)2n-1
所以F(2)-F(0)=(n+2)2n-1-1
又当x∈[0,2]时,F'(x)≥0恒成立,
从而F(x)是[0,2]上的单调递增函数,
所以对任意x1,x2∈[0,2],|F(x1)-F(x2)|≤F(2)-F(0)═(n+2)2n-1-1<(n+2)2n-1.