问题 填空题

已知{an}是公差不为0的等差数列,不等式x2-a3x+a4≤0的解集是{x|a1≤x≤a2},则an=______.

答案

{an}是公差不为0的等差数列,不等式x2-a3x+a4≤0的解集是{x|a1≤x≤a2},

所以a12-a3a1+a4=0,a22-a3a2+a4=0,设数列的公差为d,

a12-(a1+2d)a1+a1+3d=0,(d+a12-(a1+2d)(a1+d)+a1+3d=0,

解得a1=d=2,

所以数列的通项公式为:an=2n.

故答案为:2n.

解答题
单项选择题