问题 选择题
若x,y,z均为非负数,且满足x-1=
y+1
2
=
z-2
3
,则x2+y2+z2可取得的最小值为(  )
(提示:令x-1=
y+1
2
=
z-2
3
=t)
A.3B.
59
14
C.0D.
29
2
答案

x-1=

y+1
2
=
z-2
3
=t,

则x=t+1,y=2t-1,z=3t+2,

于是x2+y2+z2=(t+1)2+(2t-1)2+(3t+2)2

=t2+2t+1+4t2+1-4t+9t2+4+12t

=14t2+10t+6,

∵x,y,z均为非负数,

∴x-1≥-1,

y+1
2
1
2
z-2
3
≥-
2
3

x-1=

y+1
2
=
z-2
3
=t,

∴y≥

1
2

∴当t=

1
2
时,其最小值=14×
1
4
+10×
1
2
+6=
29
2

故选D.

单项选择题
单项选择题