问题
填空题
设函数f(x)是定义在R上的奇函数,且对任意x∈R都有f(x)=f(x+4),当x∈(-2,0)时,f(x)=2x,则f(2012)-f(2013)=______.
答案
由题意,函数f(x)是定义在R上的奇函数,∴f(0)=0
∵对任意x∈R都有f(x)=f(x+4),∴函数的周期为4,∴f(2012)=f(4×503)=f(0)=0
∵当x∈(-2,0)时,f(x)=2x,∴f(-1)=
,∴f(1)=-1 2 1 2
∴f(2013)=f(4×503+1)=f(1)=-1 2
∴f(2012)-f(2013)=1 2
故答案为:1 2