问题
解答题
已知函数f(x)=
(1)求f(x)的定义域; (2)讨论f(x)的奇偶性; (3)证明f(x)在(0,1)内单调递减. |
答案
(1)
⇔-1<x<0或0<x<1,x≠0
>01+x 1-x
故f(x)的定义域为(-1,0)∪(0,1);
(2)∵f(-x)=-
-log21 x
=-(1-x 1+x
-log21 x
)=-f(x),1+x 1-x
∴f(x)是奇函数;
(3)设0<x1<x2<1,则f(x1)-f(x2)=(
-1 x1
)+(log21 x2
-log21+x2 1+x2
=1+x1 1-x1
+log2x2-x1 x1x2 (1-x1)(1+x2) (1+x1)(1-x2)
∵0<x1<x2<1,∴x2-x1>0,x1x2>0,
(1-x1)(1+x2)=1-x1x2+(x2-x1)>1-x1x2-(x2-x1)=(1+x1)(1-x2)>0
∴
>1, log2(1-x1)(1+x2) (1+x1)(1-x2)
>0,(1-x1)(1+x2) (1+x1)(1-x2)
>0x2-x1 x1x2
∴f(x1)-f(x2)>0,即f(x1)>f(x2)∴f(x)在(0,1)内递减.
另f′(x)=-(
+1 x2
log2e)∴当x∈(0,1)时,f′(x)<02 1-x2
故f(x)在(0,1)内是减函数.