问题 选择题
已知等差数列{an}的前n项和为Sn,且满足a2+a7+a8+a11=48,a3:a11=1:2,则
lim
n→∞
nan
S2n
等于(  )
A.
1
4
B.
1
2
C.1D.2
答案

∵a2+a7+a8+a11=4a7=48

∴a7=12

由等差数列的性质可得,a3+a11=2a7=24

∵a3:a11=1:2∴a3=8,a11=16

d=

a7-a3
7-3
=1,a1=6

∴an=a3+(n-3)×1=8+n-3=n+5,S2n=2n×6+

2n(2n-1)
2
=2n2+10n

lim
n→∞
nan
S2n
=
lim
n→∞
n(n+5)
2n(n+5)
=
1
2

故选B.

多项选择题
判断题