问题
选择题
已知等差数列{an}的前n项和为Sn,且满足a2+a7+a8+a11=48,a3:a11=1:2,则
|
答案
∵a2+a7+a8+a11=4a7=48
∴a7=12
由等差数列的性质可得,a3+a11=2a7=24
∵a3:a11=1:2∴a3=8,a11=16
∴d=
=1,a1=6a7-a3 7-3
∴an=a3+(n-3)×1=8+n-3=n+5,S2n=2n×6+
=2n2+10n2n(2n-1) 2
∴lim n→∞
=nan S2n lim n→∞
=n(n+5) 2n(n+5) 1 2
故选B.