问题
解答题
已知数列{an}的前n项和为Sn,a1=
(1)证明:数列{
(2)设bn=
|
答案
(1)证明:由Sn=n2an-n(n-1)知,
当n≥2时:Sn=n2(Sn-Sn-1)-n(n-1),…(1分)
即(n2-1)Sn-n2Sn-1=n(n-1),
∴
Sn-n+1 n
Sn-1=1,对n≥2成立. …(3分)n n-1
又
S1=1,∴{1+1 1
Sn}是首项为1,公差为1的等差数列.n+1 n
Sn=1+(n-1)•1…(5分)n+1 n
∴Sn=
…(6分)n2 n+1
(2)证明:bn=
=Sn n3+3n
=1 (n+1)(n+3)
(1 2
-1 n+1
)…(8分)1 n+3
∴b1+b2+…+bn=
(1 2
-1 2
+1 4
-1 3
+…+1 5
-1 n
+1 n+2
-1 n+1
)1 n+3
=
(1 2
-5 6
-1 n+2
)<1 n+3
…(12分)5 12