问题
填空题
已知等差数列{an},{bn}的前n项和分别为Sn和Tn,若
|
答案
由题意可得
=a1 b1
=S1 T1
=13,故 a1=13b1.52 4
设等差数列{an}和{bn}的公差分别为d1 和d2,
由
=S2 T2
=a1+a1+d 1 b1+b1 +d 2
=14+45 2+3
,把 a1=13b1 代入化简可得 12b1=59d2-5d1 ①.59 5
再由
=S3 T3
=3a1+3d 1 3b1+3d 2
=11,把 a1=13b1 代入化简可得 2b1=11d2-d1 ②.21+45 3+3
解①②求得 b1=2d2,d1=7d2.故有 a1=26d2.
由于
=an b2n
=a1 +(n-1)d 1 b1+ (2n-1)d 2
=26d2 +(n-1)•7d 2 2d2+ (2n-1)d 2
为整数,7n+19 2n+1
∴n=15,
故答案为 15.