已知函数f(x-1)是偶函数,当x2>x1>-1时,[f(x2)-f(x1)](x2-x1)<0恒成立,设a=f(-2),b=f(-
|
因为函数f(x-1)是偶函数,所以f(-x-1)=f(x-1),故函数f(x)的图象关于直线x=-1对称.
又当x2>x1>-1时,[f(x2)-f(x1)](x2-x1)<0恒成立,所以函数f(x)在(-1,+∞)上单调递减,
a=f(-2)=f(-1-1)=f(1-1)=f(0),因为-1<-
<0<3,f(x)在(-1,+∞)上单调递减,2 3
所以f(3)<f(0)<f(-
),即c<a<b.2 3
故选D.