问题 解答题
已知椭圆中心在原点,焦点在x轴上,离心率e=
3
2
,它与直线x+y+1=0交于P、Q两点,若OP⊥OQ,求椭圆方程.(O为原点).
答案

设椭圆方程为

x2
a2
+
y2
b2
=1,

c
a
=
3
2
c=
3
2
a
b=
1
2
a

∴椭圆方程为

x2
4b2
+
y2
b2
=1,即x2+4y2=4b2设P(x1,y1),Q(x2,y2),

则由OP⊥OQ⇒x1x2=-y1y2

y=-1-x
x2+4y2=4b2
⇒5x2+8x+4-4b2=0由△>0⇒b2
1
5
X1+X2=-
8
5
,x1x2=
4-4b2
5

y1y2=(x1+1)(x2+1)=x1x2+x1+x2+1=

4-4b2
5
+(-
8
5
)+1=
1-4b2
5

4-4b2
5
+
1-4b2
5
=0

b2=

5
8
1
5

∴椭圆方程为

x2
5
2
+
y2
5
8
=1

单项选择题
单项选择题