问题
解答题
已知a、b、c是△ABC的三边,且满足a2+b2+c2-ab-bc-ca=0,判断△ABC的形状.
答案
∵a2+b2+c2-ab-bc-ca
=
(2a2+2b2+2c2-2ab-2bc-2ca)1 2
=
[(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ca+a2)]1 2
=
[(a-b)2+(b-c)2+(c-a)2],1 2
又∵a2+b2+c2-ab-bc-ac=0,
∴
[(a-b)2+(b-c)2+(c-a)2]=0,1 2
根据非负数的性质得,(a-b)2=0,(b-c)2=0,(c-a)2=0,
可知a=b=c,
故这个三角形是等边三角形.