问题 解答题
设椭圆C:
y2
a2
+
x2
b2
=1(a>b>0),F(0,c)(c>0)
为椭圆的焦点,它到直线y=
a2
c
的距离及椭圆的离心率均为
2
2
,直线l与y轴交于点P(0,m),与椭圆C交于相异两点A、B,且
AP
PB

(I)求椭圆方程;
(Ⅱ)若
OA
OB
=4
OP
,求m的取值范围.
答案

( I)由条件知

a2
c
-c=
2
2
c
a
=
2
2
a2=b2+c2
,解得b=c=
2
2
,a=1.

故椭圆C的方程为y2+2x2=1.

( II)由

AP
PB
OP
-
OA
=λ(
OB
-
OP
)
,化为(1+λ)
OP
=
OA
OB

∴1+λ=4,解得λ=3.

设直线l 与椭圆C交点为A(x1,y1),B(x2,y2).

联立

y=kx+m
2x2+y2=1
得(k2+2)x2+2kmx+m2-1=0.

△=(2km)2-4(k2+2)(m2-1)=4(k2-2m2+2)>0.(*)

x1+x2=

-2km
k2+2
x1x2=
m2-1
k2+2

AP
=3
PB
,∴-x1=3x2

x1+x2=-2x2
x1x2=-3
x22

消去x2,得3(x1+x2)2+4x1x2=0

3(

-2km
k2+2
)2+4
m2-1
k2+2
=0.

整理得:4k2m2+2m2-k2-2=0,

m2=

1
4
时,上式不成立;

m2

1
4
时,k2=
2-2m2
4m2-1

由(*)式得k2>2m2-2

2-2m2
4m2-1
>2m2-2

-1<m<-

1
2
1
2
<m<1

即所求m的取值范围为(-1,-

1
2
)∪(
1
2
,1).

填空题
判断题