问题 选择题
已知
x2
a2
+
y2
b2
=1(a>b>0)
,M、N是椭圆上关于原点对称的两点,P是椭圆上任意一点,且直线PM、PN的斜率分别为k1、k2(k1k2≠0),若|k1|+|k2|的最小值为1,则椭圆的离心率为(  )
A.
2
2
B.
2
4
C.
3
4
D.
3
2
答案

设P(acosβ,bsinβ),M(acosα,bsinα),则N(-acosα,-bsinα),

可得k1=

b(sinβ-sinα)
a(cosβ-cosα)
k2=
b(sinβ+sinα)
a(cosβ+cosα)

|k1|•|k2|=|

b2(sin2β-sin2α)
a2(cos2β-cos2α)
|=
b2
a2

|k1|+|k2|≥2

|k1k2|
=
2b
a
2b
a
=1⇒e=
3
2

故选D.

问答题 简答题
多项选择题