设F1,F2分别是椭圆
(Ⅰ)若OA⊥OB,求AB的长; (Ⅱ)在x轴上是否存在一点M,使得
|
(Ⅰ)当直线l与x轴垂直时,A(-
,3
),B(-1 2
,-3
),此时OA与OB不垂直.(2分)1 2
当直线l与x轴不垂直时,设l的方程为y=k(x+
),A(x1,y1),B(x2,y2),3
联立直线与椭圆的方程
,整理得(4k2+1)x2+8y=k(x+
)3 x2+4y2=4
k2x+12k2-4=0(4分)x1+x2=3
,x1x2=-8
k23 4k2+1 12k2-4 4k2+1
∵OA⊥OB,∴x1x2+y1y2=0x1x2+k2(x1+
)(x2+3
)=x1x2+k2x1x2+3
k2(x1+x2)+3k2=03
k2•3
+(1+k2)•-8
k23 4k2+1
+3k2=012k2-4 4k2+1
解得k2=
(6分)4 11
∴|AB|=
|x1-x2|=1+k2
(8分)20 9
(Ⅱ)设M(m,0)为x轴上一点
(12分)
•MA
=(x1-m)(x2-m)+y1y2=x1x2-m(x1+x2)+m2+y1y2MB =
-m•12k2-4 4k2+1
+m2--8
k23 4k2+1 k2 4k2+1 = (4m2+8
m+11)k2+m2-43 4k2+1
若
•MA
为定值,则有MB
=4m2+8
m+113 m2-4
,解得m=-4 1 9 3 8
所以存在点M(-
, 0)使得9 3 8
•MA
为定值.(14分)MB