问题
解答题
设f(k)是满足不等式log2x+log2(3•2k-1-x)≥2K-1,(k∈N)的自然数x的个数, (1)求f(x)的解析式; (2)记Sn=f(1)+f(2)+…+f(n),求Sn解析式; (3)记Pn=n-1,设Tn=
|
答案
(1)原不等式可转化为:x>0 3•2k-1-x>0 x(3•2k-1-x)≥22k-1
即x>0 x<3•2k-1 x2-3•2k-1x+2k-1•2k≤0
∴2k-1≤x≤2k(4分)
∴f(k)=2k-(2k-1-1)=2k-1+1.(6′)
(2)∵Sn=f(1)+f(2)+…+f(n)
=20+21+…+2n-1+n
=2n+n-1.(10′)
(3)∵Tn=
=log22n log22n+1-10.5
=1+n n-9.5
,(12′)9.5 n-9.5
当1≤n≤9时,Tn单调递减,此时(Tn)max=T1=-
,(14′)2 17
当n≥10时,Tn单调递减,此时(Tn)max=T10=20,
∴(Tn)max=20,mmin=21.(16′)