已知数列an满足a1=1,n≥2时,
(1)求证:数列{
(2)求{
|
(1)证明:由已知
=an an-1
.2-3an an-1+2
整理可得an-1-an=2an-1an(n≥2),
同时除以anan-1可得
-1 an
=2,1 an-1
所以{
}为首项为1 an
=1,公差为2的等差数列.1 a1
(2)由(1)可知,
=1+2(n-1)=2n-1,1 an
所以
=(2n-1)3n,3n an
Sn=1×3+3×32+…+(2n-1)×3n①
3Sn=1×32+3×33+…+(2n-1)×3n+1②
①-②得-2Sn=3+2×(32+33+…+3n)-(2n-1)×3n+1=(2-2n)•3n+1-6
所以得Sn=(n-1)3n+1+3