问题 解答题
已知数列{ an}、{ bn}满足:a1=
1
4
an+bn=1,bn+1=
bn
1-an2

(1)求a2,a3
(2)证数列{
1
an
}为等差数列,并求数列{an}和{ bn}的通项公式;
(3)设Sn=a1a2+a2a3+a3a4+…+anan+1,求实数λ为何值时4λSn<bn恒成立.
答案

(1)∵a1=

1
4
,∴b1=1-
1
4
=
3
4
b2=
b1
1-a12
=
3
4
1-(
1
4
)2
=
4
5

a2=1-b2=1-

4
5
=
1
5
b3=
b2
1-a22
=
4
5
1-(
1
5
)2
=
5
6
a3=1-b3=1-
5
6
=
1
6

a2=

1
5
a3=
1
6

(2)证明:由an+1+bn+1=1,bn+1=

bn
1-an2

1-an+1=bn+1=

bn
1-an2
=
1-an
(1-an)(1+an)
=
1
1+an

1-an+1=

1
1+an
,即an-an+1=anan+1

1
an+1
-
1
an
=1

∴数列{

1
an
}是以4为首项,1为公差的等差数列.

1
an
=4+(n-1)=3+n,则an=
1
n+3

bn=1-an=1-

1
n+3
=
n+2
n+3

(3)由an=

1
n+3

∴Sn=a1a2+a2a3+…+anan+1

=

1
4×5
+
1
5×6
+…+
1
(n+3)(n+4)

=

1
4
-
1
5
+
1
5
-
1
6
+…+
1
n+3
-
1
n+4

=

1
4
-
1
n+4
=
n
4(n+4)

Sn-bn=

λn
n+4
-
n+2
n+3
=
(λ-1)n2+(3λ-6)n-8
(n+3)(n+4)

要使4λSn<bn恒成立,只需(λ-1)n2+(3λ-6)n-8<0恒成立,

设f(n)=(λ-1)n2+3(λ-2)n-8

当λ=1时,f(n)=-3n-8<0恒成立,

当λ>1时,由二次函数的性质知f(n)不满足对于任意n∈N*恒成立,

当λ<l时,对称轴n=-

3
2
λ-2
λ-1
=-
3
2
(1-
1
λ-1
)<0

f(n)在[1,+∞)为单调递减函数.

只需f(1)=(λ-1)n2+(3λ-6)n-8=(λ-1)+(3λ-6)-8=4λ-15<0

λ<

15
4
,∴λ≤1时4λSn<bn恒成立.

综上知:λ≤1时,4λSn<bn恒成立.

单项选择题
多项选择题