问题 填空题

平面内有四个点A、O、B、C,其中∠AOB=120°,∠ACB=60°,AO=BO=2,则满足题意的OC长度为整数的值可以是______.

答案

如图1,∵∠AOB=120°,∠ACB=60°,

∴∠ACB=

1
2
∠AOB=60°,

∴点C在以点O为圆心的圆上,且在优弧AB上.

∴OC=AO=BO=2;

如图2,∵∠AOB=120°,∠ACB=60°,

∴∠AOB+∠ACB=180°,

∴四个点A、O、B、C共圆.

设这四点都在⊙M上.点C在优弧AB上运动.

连接OM、AM、AB、MB.

∠ACB=60°,

∴∠AMB=2∠ACB=120°.

∵AO=BO=2,

∴∠AMO=∠BMO=60°.

又∵MA=MO,

∴△AMO是等边三角形,

∴MA=AO=2,

∴MA<OC≤2MA,即2<OC≤4,

∴OC可以取整数3和4.

综上所述,OC可以取整数2,3,4.

故答案是:2,3,4.

单项选择题 B型题
多项选择题 案例分析题