已知正项数列{an}的前n和为Sn,且
(1)求证:数列{an}是等差数列; (2)若bn=
(3)在(2)的条件下,是否存在常数λ,使得数列{
|
(1)∵Sn=
(an+1)2,∴a1=S1=1 4
(a1+1)2,∴a1=1(an>0)1 4
当n≥2时,an=Sn-Sn-1=
(an+1)2-1 4
(an-1+1)2,∴(an+an-1)(an-an-1-2)=01 4
∵an>0,
∴an-an-1=2,
∴{an}为等差数列.(4')
(2)由(1)知,{an}是以1为首项,2为公差的等差数列,
∴an=2n-1
∴bn=
,①2n-1 2n
Tn=
+1 2
+…+3 22
,①2n-1 2n
Tn= 1 2
+1 22
+3 23
+…+5 24
+2n-3 2n
②2n-1 2n
①-②得:
Tn=1 2
+2(1 2
+1 22
+1 23
+1 24
)-1 2n 2n-1 2n+1
∴Tn=3-
(9')2n-3 2n
(3)∵
=(3-Tn+λ an+2
+λ)2n+3 2n
=1 2n+3
-3+λ 2n+3 1 2n
易知,当λ=-3时,数列{
}为等比数列.(13')Tn+λ an+2