已知数列an满足a1=1,an+1=an+n(n∈N*),数列bn满足b1=1,(n+2)bn+1=nbn(n∈N*),数列cn满足c1=1,
(1)求数列an、bn的通项公式; (2)求数列cn的通项公式; (3)是否存在正整数k使得k(an+
|
(1)∵a1=1,an+1=an+n(n∈N*)
∴n≥2,an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=(n-1)+(n-2)+…+1+1=
+1=n(n-1) 2
n2-1 2
n+11 2
∴an=
n2-1 2
n+1(n∈N*),(n+2)bn+1=nbn(n∈N*)1 2
∴
=bn+1 bn
,n n+2
∴n≥2,bn=
•bn bn-1
…bn-1 bn-2
•b1=b2 b1
•n-1 n+1
…n-2 n
•1=1 3
,2 n(n+1)
∴bn=
(n∈N*)2 n(n+1)
(2)c1=1,
+c1 1
+…+c2 22
=cn n2 cn+1 n+1
∴
+c1 1
+…+c2 22
=cn-1 (n-1)2
(n≥2)(n∈N*)cn n
两式相减得:
=cn n2
-cn+1 n+1 cn n
∴
=cn+1 cn
,n=1,(n+1)2 n2
=c1 1
得出c2=2,n≥2c2 2
∴cn=
•cn cn-1
…cn-1 cn-2
•c2=c3 c2
•n2 (n-1)2
…(n-1)2 (n-2)2
•2=32 22 n2 2
cn=
.1,n=1
,n≥2,n∈N*n2 2
(3)当n=1时,k(a1+
)-3•7 2
>c1+6+151 b2
∴k>
且k∈N*k≥7且k∈N*62 9
当n≥2时,k(an+
)-7 2
>cn+6n+15,即k(3 bn+1
-n2 2
+n 2
)-9 2
(n+2)(n+1)>3 2
+6n+15n2 2
k(n2-n+9)>4n2+21n+36
∵n2-n+9>0恒成立,
∴k>4n2+21n+36 n2-n+9
事实上:
=4+4n2+21n+36 n2-n+9
n+25 n+
-19 n
≥6(n=3取等号)9 n
∴(
)max=9∴k>9且k∈N*.4n2+21n+36 n2-n+9
综上:k≥10,k∈N*故k的最小值为10.