问题
解答题
数列{an}的前n项的和为Sn,对于任意的自然数an>0,4Sn=(an+1)2 (Ⅰ)求证:数列{an}是等差数列,并求通项公式 (Ⅱ)设bn=
|
答案
(Ⅰ)证明:∵4S1=4a1=(a1+1)2,∴a1=1.
当n≥2时,4an=4Sn-4Sn-1=(an+1)2-(an-1+1)2,
∴2(an+an-1)=an2-an-12,
又{an}各项均为正数,∴an-an-1=2,
∴数列{an}是等差数列,
∴an=2n-1;
(Ⅱ)bn=
=an 3n 2n-1 3n
∴Tn=b1+b2+…+bn=
+1 31
+…+3 32
---①2n-1 3n
∴
Tn=1 3
+1 32
+…+3 33
+2n-3 3n
---②2n-1 3n+1
①-②
Tn=2 3
+2(1 31
+1 32
+…+1 33
)-1 3n
=2n-1 3n+1
-2 3 2n+2 3n+1
∴Tn=1-
-2 3
.n+1 3n