问题 解答题
数列{an}的前n项的和为Sn,对于任意的自然数an>0,4Sn=(an+1)2
(Ⅰ)求证:数列{an}是等差数列,并求通项公式
(Ⅱ)设bn=
an
3n
,求和Tn=b1+b2+…+bn
答案

(Ⅰ)证明:∵4S1=4a1=(a1+1)2,∴a1=1.

当n≥2时,4an=4Sn-4Sn-1=(an+1)2-(an-1+1)2

∴2(an+an-1)=an2-an-12

又{an}各项均为正数,∴an-an-1=2,

∴数列{an}是等差数列,

∴an=2n-1;

(Ⅱ)bn=

an
3n
=
2n-1
3n

∴Tn=b1+b2+…+bn=

1
31
+
3
32
+…+
2n-1
3n
---①

1
3
Tn=
1
32
+
3
33
+…+
2n-3
3n
+
2n-1
3n+1
---②

①-②

2
3
Tn=
1
31
+2(
1
32
+
1
33
+…+
1
3n
)-
2n-1
3n+1
=
2
3
-
2n+2
3n+1

∴Tn=1-

2
3
-
n+1
3n

填空题
选择题