问题 解答题
已知数列{an},{bn}满足a1=2,2an=1+anan+1,bn=an-1,数列{bn}的前n项和为Sn,Tn=S2n-Sn
(1)求证:数列{
1
bn
}
为等差数列,并求通项bn
(2)求证:Tn+1>Tn
(3)求证:当n≥2时,S2n
7n+11
12
答案

(1)由bn=an-1,得an=bn+1,代入2an=1+anan+1

得2(bn+1)=1+(bn+1)(bn+1+1),

∴bnbn+1+bn+1-bn=0,从而有

1
bn+1
-
1
bn
=1,

∵b1=a1-1=2-1=1,

{

1
bn
}是首项为1,公差为1的等差数列,

1
bn
=n,即bn=
1
n
;(5分)

(2)∵Sn=1+

1
2
++
1
n

Tn=S2n-Sn=

1
n+1
+
1
n+2
++
1
2n

Tn+1=

1
n+2
+
1
n+3
++
1
2n
+
1
2n+1
+
1
2n+2
Tn+1-Tn=
1
2n+1
+
1
2n+2
-
1
n+1
1
2n+2
+
1
2n+2
-
1
n+1
=0

∴Tn+1>Tn;(10分)

(3)∵n≥2,

S2n=S2n-S2n-1+S2n-1-S2n-2++S2-S1+S1

=T2n-1+T2n-2+…+T2+T1+S1

由(2)知T2n-1T2n-2≥…≥T2≥T1≥S1

T1=

1
2
S1=1,T2=
7
12

S2n=T2n-1+T2n-2+…+T2+T1+S1

≥(n-1)T2+T1+S1=

7
12
(n-1)+
1
2
+1=
7n+11
12
.(16分)

单项选择题
问答题