问题 解答题
已知等差数列an中,公差d>0,其前n项和为Sn,且满足a2•a3=45,a1+a4=14.
(1)求数列an的通项公式;
(2)设由bn=
Sn
n+c
(c≠0)构成的新数列为bn,求证:当且仅当c=-
1
2
时,数列bn是等差数列;
(3)对于(2)中的等差数列bn,设cn=
8
(an+7)•bn
(n∈N*),数列cn的前n项和为Tn,现有数列f(n),f(n)=
2bn
an-2
-Tn
(n∈N*),
求证:存在整数M,使f(n)≤M对一切n∈N*都成立,并求出M的最小值.
答案

(1)∵等差数列an中,公差d>0,

a2a3=45
a1+a4=14
a2a3=45
a2+a3=14
a2=5
a3=9
⇒d=4⇒an=4n-3(4分)

(2)Sn=

n(1+4n-3)
2
=n(2n-1),bn=
Sn
n+c
=
n(2n-1)
n+c
,(6分)

由2b2=b1+b3

12
2+c
=
1
1+c
+
15
3+c
,化简得2c2+c=0,c≠0,∴c=-
1
2
(8分)

反之,令c=-

1
2
,即得bn=2n,显然数列bn为等差数列,

∴当且仅当c=-

1
2
时,数列bn为等差数列.(10分)

(3)∵cn=

8
(an+7)•bn
=
1
(n+1)n
=
1
n
-
1
n+1

Tn=1-

1
2
+
1
2
-
1
3
++
1
n
-
1
n+1
=
n
n+1
f(n)=
2bn
an-2
-Tn=
4n
4n-5
-
n
n+1
=1+
5
4n-5
-1+
1
n+1
=
5
4n-5
+
1
n+1
(12分)

f(1)=-

9
2
,而n≥2时f(n+1)-f(n)=
5
4n-1
+
1
n+2
-
5
4n-5
-
1
n+1
=
-20
(4n-1)(4n-5)
-
1
(n+2)(n+1)
<0

∴f(n)在n≥2时为单调递减数列,此时f(n)max=f(2)=2(14分)

∴存在不小于2的整数,使f(n)≤2对一切n∈N*都成立,Mmin=2(16分)

多项选择题
多选题