问题
解答题
已知数列{an}满足an=2an-1+2n-1(n∈N+,且n≥2),a4=81. (1)求数列的前三项a1,a2,a3; (2)数列{
(3)求数列{an}的前n项和Sn. |
答案
(1)由an=2an-1+2n-1(n∈N+,且n≥2)得a4=2a3+24-1=81,得a3=33
同理,得a2=13,a1=5…(4分)
(2)对于n∈N,且n≥2,
∵
-an+p 2n
=an-1+p 2n-1
=an-2an-1-p 2n
=1-2n-1-p 2n 1+p 2n
又数列{
}为等差数列,∴an+p 2n
-an+p 2n
是与n无关的常数,an-1+p 2n-1
∴1+p=0,p=-1…(8分)
(3)由(2)知,等差数列{
}的公差为1,an+p 2n
∴
=an-1 2n
+(n-1)=n+1,得an=(n+1)•2n+1.…(9分)a1-1 2
∴Sn=a1+a2+…+an=2×2+3×22+4×23+…+(n+1)×2n+n,
记Tn=2×2+3×22+4×23+…+(n+1)×2n,则有2Tn=+2×22+3×23+4×24+…+n×2n+(n+1)×2n+1,
两式相减,得 Tn=n×2n+1,
故 Sn=n×2n+1+n=n(2n+1+1).…(13分)