(已知数列{an}中,a1=5且an=2an-1+2n-l(n≥2且n∈N*.) (I)证明:数列{
(II)求数列{an-1}的前n项和Sn. |
(I)设bn=
,则b1=an-1 2n
=2…2分,5-1 2
bn+1-bn=
-an+1-1 2n+1
=an-1 2n
[(2n+1-1)+1]=1…4分1 2n+1
∴数列{
}为首项是2,公差是1的等差数列…5分an-1 2n
(Ⅱ)由(Ⅰ)知,
=an-1 2n
+(n-1)×1,a1-1 2
∴an-1=(n+1)•2n…7分
∵Sn=2•21+3•22+…+n•2n-1+(n+1)•2n①
∴2Sn=2•22+3•23+…+n•2n+(n+1)•2n+1②…9分
①-②,得:-Sn=4+(22+23+…+2n)-(n+1)•2n+1
∴Sn=-4-4(2n-1-1)+(n+1)•2n+1,
∴Sn=n•2n+1…12分