问题 解答题
已知数列{an}为等差数列,且a1+a2n-1=2n,Sn为数列{
1
an
}的前n项和,设f(n)=S2n-Sn
(1)比较f(n)与f(n+1)的大小; 
(2)若g(x)=log2x-12f(n)<0,在x∈[a,b]且对任意n>1,n∈N*恒成立,求实数a,b满足的条件.
答案

(1)∵数列{an}为等差数列,且a1+a2n-1=2n,令n=1可得 a1 =1,再令n=2可得a2=2,故 an=n.

f(n+1)-f(n)=S2(n+1)-Sn+1-[S2n-Sn]=S2(n+1)-S2n-(Sn+1-Sn

=a2n+2+a2n+1-an+1=

1
2n+2
+
1
2n+1
-
1
n+1
=
1
(2n+1)(2n+2)
>0,

∴f(n+1)>f(n).(6分)

(2)由上知:{ f(n)}为递增数列,必需 log2x<12 f(2)成立.(8分)

∵f(2)=S4-S2=

7
12
,∴log2x<7,

∴0<x<128,∴0<a<b<128.

单项选择题
单项选择题