问题
解答题
(1)已知等差数列{an},bn=
(2)已知等比数列{cn},cn>0(n∈N*)),类比上述性质,写出一个真命题并加以证明. |
答案
(1)由题意可知bn=
=n(a1+an) 2 n
,a1+an 2
∴bn+1-bn=
-a1+an+1 2
=a1+an 2
,an+1-an 2
∵{an}等差数列,∴bn+1-bn=
=an+1-an 2
为常数,(d为公差)d 2
∴{bn}仍为等差数列;
(2)类比命题:若{cn}为等比数列,cn>0,(n∈N*),
dn=
,则{dn}为等比数列,n c1•c2…cn
证明:由等比数列的性质可得:dn=
=n (c1cn) n 2
,c1cn
故
=dn+1 dn
=cn+1 cn
为常数,(q为公比)q
故{dn}为等比数列