问题 解答题
(1)已知等差数列{an},bn=
a1+a2+a3+…+an
n
(n∈N*),求证:{bn}仍为等差数列;
(2)已知等比数列{cn},cn>0(n∈N*)),类比上述性质,写出一个真命题并加以证明.
答案

(1)由题意可知bn=

n(a1+an)
2
n
=
a1+an
2

∴bn+1-bn=

a1+an+1
2
-
a1+an
2
=
an+1-an
2

∵{an}等差数列,∴bn+1-bn=

an+1-an
2
=
d
2
为常数,(d为公差)

∴{bn}仍为等差数列;

(2)类比命题:若{cn}为等比数列,cn>0,(n∈N*),

dn=

nc1c2cn
,则{dn}为等比数列,

证明:由等比数列的性质可得:dn=

n(c1cn)
n
2
=
c1cn

dn+1
dn
=
cn+1
cn
=
q
为常数,(q为公比)

故{dn}为等比数列

填空题
选择题