问题
解答题
已知数列{an}中,a1=0,an+1=an•q+qn+1(q>0),bn=an+2n,n=1,2,3,…. (I)求证数列{
(II)试比较b1b3与b22的大小; (III)求正整数k,使得对于任意的正整数n,
|
答案
(I)∵an+1=an•q+qn+1(q>0)
∴
=an+1 qn+1
=an•q+qn+1 qn+1
+1,又an qn
=0,a1 q
即数列{
}是以0为首项,1为公差的等差数列(3分)an qn
且
=n-1,an=(n-1)qn(n=1,2,3)an qn
(II)bn=an+2n=(n-1)qn+2n(4分)
∴b1=2,b2=q2+4,b3=2q3+8(5分)
∴b22-b1b3=(q2+4)2-2(2q3+8)=(q4+8q2+16)-4q3-16=q4-4q3+8q2=q2(q2-4q+8)=q2[(q-2)2+4]>0
∴b22>b1b3(8分)
(III)∵bn=(n-1)qn+2n,n=1,2,3,…,∴bn>0
b1=2,b2=q2+4,bn+1=nqn+1+2n+1
-bn bn+1
=b1 b2 b2bn-b1bn+1 b2bn+1
又b2bn-b1bn+1=(q2+4)[(n-1)qn+2n]-2(nqn+1+2n+1)
=[(q2+4)(n-1)-2nq]qn+q2•2n
①当n=1时,b2bn-b1bn+1=0,即
=b1 b2 bn bn+1
②当n≥2时,∵q>0,q2+4≥2•q•2=4q
∴(q2+4)(n-1)-2nq≥4(n-1)q-2nq=2(n-2)q≥0又q2•2n>0
∴b2bn-b1bn+1>0
由①②得
-bn bn+1
=b1 b2
≥0,即对于任意的正整数n,b2bn- b1bn+1 b2bn+1
≤b1 b2
恒成立bn bn+1
故所求的正整数k=1.