已知△ABC的三个顶点均在椭圆4x2+5y2=80上,且点A在y轴的正半轴上.
(Ⅰ)若△ABC的重心是椭圆的右焦点F2,试求直线BC的方程;
(Ⅱ)若∠A=90°,试证直线BC恒过定点.
(Ⅰ)设B(x1,y1),C(x2,y2).
整理椭圆方程得
+x2 20
=1,∴短轴b=4,a=2 y2 16 5
∴c=
=2,20-16
则A(0,4 ),F1(2,0)
∴
=2,x1+x2=60+x1+x2 3
同理y1+y2=-4
又
+x12 20
=1,y12 16
+x22 20
=1,y22 16
两式相减可得4(x1+x2)+5(y1+y2)×k=0,
∴k=
(k为BC斜率)6 5
令BC直线为:y=
x+b,则y1+y2=6 5
(x1+x2)+2b6 5
∴b=-28 5
∴BC直线方程为:y=
x-6 5 28 5
即5y-6x+28=0.…(7分)
(Ⅱ)由AB⊥AC,得
•AB
=x1x2+y1y2-4(y1+y2)+16=0 (1)AC
设直线BC方程为y=kx+b代入4x2+5y2=80,得(4+5k2)x2+10bkx+5b2-80=0
∴x1+x2=
,x1x2=-10kb 4+5k2 5b2-80 4+5k2
∴y1+y2=k(x1+x2)+2b=
,y1y2=k2x1x2+kb(x1+x2)+b2=8k 4+5k2 4b2-80k2 4+5k2
代入(1)式得,
=0,9b2-32b-16 4+5k2
解得b=4(舍)或b=-4 9
故直线BC过定点(0,-
).4 9