问题
解答题
已知函数f(x)=3x2+1,g(x)=2x,数列{an}满足对于一切n∈N*有an>0,且f(an+1)-f(an)=g(an+1+
(1)求证:数列{an}为等比数列,并指出公比; (2)若k+l=9,求数列{bn}的通项公式. (3)若k+l=M0(M0为常数),求数列{an}从第几项起,后面的项都满足an>1. |
答案
(1)∵f(an+1)-f(an)=g(an+1+
)3 2
∴3(an+1)2+1-3an2-1=2(an+1+
),即6a^=2an+1⇒3 2
=3an+1 an
故数列{an}为等比数列,公比为3.
(2)bn=logana⇒
=logaan⇒1 bn
-1 bn+1
=loga1 bn
=loga3an+1 an
所以数列{
}是以1 bn
为首项,公差为loga3的等差数列.1 b1
又loga3=
=
k-1 b
l1 b k-l
=-3⇒a=3-1+3l-1-3k k-l
=(1 3
)1 3 1 3
又
=1 bk
+(k-1)(-3)=1+3l,且k+l=91 b1
∵
=3(k+l)-2=251 b1
∴
=25+(n-1)(-3)=28-3n⇒bn=1 bn 1 28-3n
(3)∵k+l=M0⇒
=3M0-21 b1
∴
=3M0-2+(n-1)(-3)=3M0-3n+11 bn
假设第m项后有an>1
∵a=(
)1 3
∈(0,1)⇒1 3
=logaan<01 bn
即第m项后
<0,1 bn
于是原命题等价于
⇒
>01 bm
<01 bm+1
⇒M0-3M0-3m+1>0 3M0-3(m+1)+1<0
<m<M0+2 3 1 3
∵m,M∈N*⇒m=M0故数列{an}从M0+1项起满足an>1.