问题 解答题
已知函数f(x)=3x2+1,g(x)=2x,数列{an}满足对于一切n∈N*有an>0,且f(an+1)-f(an)=g(an+1+
3
2
)
.数列{bn}满足bn=logana,设k,l∈N*bk=
1
1+3l
bl=
1
1+3k

(1)求证:数列{an}为等比数列,并指出公比;
(2)若k+l=9,求数列{bn}的通项公式.
(3)若k+l=M0(M0为常数),求数列{an}从第几项起,后面的项都满足an>1.
答案

(1)∵f(an+1)-f(an)=g(an+1+

3
2
)

3(an+1)2+1-3an2-1=2(an+1+

3
2
),即6a^=2an+1
an+1
an
=3

故数列{an}为等比数列,公比为3.

(2)bn=logana⇒

1
bn
=logaan
1
bn+1
-
1
bn
=loga
an+1
an
=loga3

所以数列{

1
bn
}是以
1
b1
为首项,公差为loga3的等差数列.

loga3=

1
b
k
-
1
b
l
k-l
=
1+3l-1-3k
k-l
=-3⇒a=3-
1
3
=(
1
3
)
1
3

1
bk
=
1
b1
+(k-1)(-3)=1+3l,且k+l=9

1
b1
=3(k+l)-2=25

1
bn
=25+(n-1)(-3)=28-3n⇒bn=
1
28-3n

(3)∵k+l=M0

1
b1
=3M0-2

1
bn
=3M0-2+(n-1)(-3)=3M0-3n+1

假设第m项后有an>1

a=(

1
3
)
1
3
∈(0,1)⇒
1
bn
=logaan<0

即第m项后

1
bn
<0,

于是原命题等价于

1
bm
>0
1
bm+1
<0
3M0-3m+1>0      
3M0-3(m+1)+1<0
M0-
2
3
<m<M0+
1
3

∵m,M∈N*⇒m=M0故数列{an}从M0+1项起满足an>1.

问答题 简答题
填空题