问题 解答题
已知椭圆的中心在原点,焦点在x轴上,离心率为
3
2
,且经过点M(4,1),直线l:y=x+m交椭圆于不同的两点A,B.
(1)求椭圆的方程;
(2)求m的取值范围.
答案

(1)∵

c
a
=
3
2

b
a
=
1
2
,依题意设椭圆方程为:
x2
4b2
+
y2
b2
=1
,把点(4,1)代入,得b2=5,

∴椭圆方程为

x2
20
+
y2
5
=1.(5分)

(2)把y=x+m代入椭圆方程得:5x2+8mx+4m2-20=0,

∵直线l:y=x+m交椭圆于不同的两点A,B,

∴△=64m2-4×5(4m2-20)>0,整理得m2<25,

∴-5<m<5.(10分)

单项选择题
问答题 简答题