问题
解答题
已知在等比数列{an}中,a1=1,且a2是a1和a3-1的等差中项.
(I)求数列{an}的通项公式;
(II)若数列{bn}满足bn=2n-1+an(n∈N*),求{bn}的前n项和Sn.
答案
(I)设等比数列{an}的公比为q,
∵a2是a1和a3-1的等差中项,a1=1,
∴2a2=a1+(a3-1)=a3,
∴q=
=2,a3 a2
∴an=a1qn-1=2n-1,(n∈N*).
(Ⅱ)∵bn=2n-1+an,
∴Sn=(1+1)+(3+2)+(5+22)+…+(2n-1+2n-1)
=[1+3+5+…+(2n-1)]+(1+2+22+…+2n-1)
=
+n[1+(2n-1)] 2 1×(1-2n) 1-2
=n2+2n-1.