问题 解答题
已知数列{an},其前n项和为Sn=
3
2
n2+
7
2
n (n∈N*)

(Ⅰ)求a1,a2
(Ⅱ)求数列{an}的通项公式,并证明数列{an}是等差数列;
(Ⅲ)如果数列{bn}满足an=log2bn,请证明数列{bn}是等比数列,并求其前n项和Tn
答案

(Ⅰ)a1=S1=5,a1+a2=S2=

3
2
×22+
7
2
×2=13,

解得a2=8.

(Ⅱ)当n≥2时,an=Sn-Sn-1=

3
2
[n2-(n-1)2]+
7
2
[n-(n-1)]=
3
2
(2n-1)+
7
2
=3n+2

又a1=5满足an=3n+2,

∴an=3n+2(n∈N*).

∵an-an-1=3n+2-[3(n-1)+2]=3(n≥2,n∈N*),

∴数列{an}是以5为首项,3为公差的等差数列.

(Ⅲ)由已知得bn=2an(n∈N*),

bn+1
bn
=
2an+1
2an
=2an+1-an=23=8(n∈N*),

b1=2a1=32

∴数列{bn}是以32为首项,8为公比的等比数列.

Tn=

32(1-8n)
1-8
=
32
7
(8n-1).

选择题
多项选择题 案例分析题