问题
解答题
已知数列{an},其前n项和为Sn=
(Ⅰ)求a1,a2; (Ⅱ)求数列{an}的通项公式,并证明数列{an}是等差数列; (Ⅲ)如果数列{bn}满足an=log2bn,请证明数列{bn}是等比数列,并求其前n项和Tn. |
答案
(Ⅰ)a1=S1=5,a1+a2=S2=
×22+3 2
×2=13,7 2
解得a2=8.
(Ⅱ)当n≥2时,an=Sn-Sn-1=
[n2-(n-1)2]+3 2
[n-(n-1)]=7 2
(2n-1)+3 2
=3n+2.7 2
又a1=5满足an=3n+2,
∴an=3n+2(n∈N*).
∵an-an-1=3n+2-[3(n-1)+2]=3(n≥2,n∈N*),
∴数列{an}是以5为首项,3为公差的等差数列.
(Ⅲ)由已知得bn=2an(n∈N*),
∵
=bn+1 bn
=2an+1-an=23=8(n∈N*),2an+1 2an
又b1=2a1=32,
∴数列{bn}是以32为首项,8为公比的等比数列.
∴Tn=
=32(1-8n) 1-8
(8n-1).32 7