问题 解答题
设数列{an}的前n项和为Sn,点P(Sn,an)在直线(3-m)x+2my-m-3=0上,(m∈N*,m为常数,m≠3);
(1)求an
(2)若数列{an}的公比q=f(m),数列{bn}满足b1=a1bn=
3
2
f(bn-1),(n∈N*,n≥2)
,求证:{
1
bn
}
为等差数列,并求bn
(3)设数列{cn}满足cn=bn•bn+2,Tn为数列{cn}的前n项和,且存在实数T满足Tn≥T,(n∈N*),求T的最大值.
答案

(1)由题设,(3-m)Sn+2man-m-3=0①(1分)

(3-m)a1+2ma1-m-3=0⇒a1=

m+3
m+3
=1(2分)

由①,n≥2时,(3-m)Sn-1+2man-1-m-3=0②(3分)

①-②得,(3-m)an+2m(an-an-1)=0⇒an=

2m
m+3
an-1,(4分)

an=(

2m
m+3
)n-1.(5分)

(2)由(1)知q=

2m
m+3
b1=a1=1,bn=
3
2
f(bn-1)=
3
2
×
2bn-1
bn-1+3

化简得:

1
bn
=
1
bn-1
+
1
3
(7分)

{

1
bn
}是以1为首项、
1
3
为公差的等差数列,(8分)

1
bn
=1+(n-1)×
1
3
=
n+2
3
bn=
3
n+2
.(10分)

(3)由(2)知cn=bnbn+2=

3
n+2
3
n+4
>0,n∈N*.Tn为数列cn的前n项和,因为cn>0,

所以Tn是递增的,TnT1=c1=

3
5
.(12分)

所以要满足Tn≥T,(n∈N*),∴T≤T1=

3
5
(13分)

所以T的最大值是

3
5
(14分)

解答题
判断题