问题 解答题
已知数列{an}满足a1=1,
an-1
an
=
an-1+1
1-an
(n∈N*,n>1).
(1)求证:数列{
1
an
}
是等差数列;
(2)求数列{anan+1}的前n项和Sn
(3)设fn(x)=Snx2n+1,bn=f'n(2),求数列{bn}的前n项和Tn
答案

(1)证明:当n≥2时,由

an-1
an
=
an-1+1
1-an
得:an-1-an-2an-1an=0

两边同除以anan-1得:

1
an
-
1
a n-1
=2(2分)

{

1
an
}是以
1
a1
=1
为首项,d=2为公差的等差数列(4分)

(2)由(1)知:

1
an
=1+(n-1)×2=2n-1,

an=

1
2n-1
(6分)

anan+1=

1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)Sn=
1
2
[(1-
1
3
)+(
1
3
-
1
5
)+…+(
1
2n-1
-
1
2n+1
)]=
n
2n+1
(8分)

(3)fn(x)=

n
2n+1
x2n+1

∴bn=n•22n

Tn=4+2×42+3×43+…+n×4n

4Tn=42+2×43+3×44+…+(n-1)×4n+n×4n+1

相减得:-3Tn=4+42+43+…+4n-n×4n+1=-

(3n-1)×4n+1+4
3

Tn=

(3n-1)×4n+1+4
9
(12分)

填空题
判断题