问题
解答题
已知数列{an}满足a1=1,
(1)求证:数列{
(2)求数列{anan+1}的前n项和Sn; (3)设fn(x)=Snx2n+1,bn=f'n(2),求数列{bn}的前n项和Tn. |
答案
(1)证明:当n≥2时,由
=an-1 an
得:an-1-an-2an-1an=0an-1+1 1-an
两边同除以anan-1得:
-1 an
=2(2分)1 a n-1
∴{
}是以1 an
=1为首项,d=2为公差的等差数列(4分)1 a1
(2)由(1)知:
=1+(n-1)×2=2n-1,1 an
∴an=
(6分)1 2n-1
∴anan+1=
=1 (2n-1)(2n+1)
(1 2
-1 2n-1
)Sn=1 2n+1
[(1-1 2
)+(1 3
-1 3
)+…+(1 5
-1 2n-1
)]=1 2n+1
(8分)n 2n+1
(3)fn(x)=
•x2n+1,n 2n+1
∴bn=n•22n
Tn=4+2×42+3×43+…+n×4n
4Tn=42+2×43+3×44+…+(n-1)×4n+n×4n+1
相减得:-3Tn=4+42+43+…+4n-n×4n+1=-(3n-1)×4n+1+4 3
∴Tn=
(12分)(3n-1)×4n+1+4 9